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1 Introduction

This article gives some properties of intervals in R and discusses some problems involving intervals
for which the concept of outer measure on R provides a more efficient solution than an elementary
approach. The outer measure is then defined and some of its main properties in relation to
intervals are developed, culminating in the countable additivity of outer measure on the ‘system
of intervals’ I = { all countable unions of intervals in R }. This demonstrates early on how the
outer measure on R is naturally countably additive on a quite large class of sets, and motivates the
Borel algebra B as an extension of that class which provides an additional desired property of outer
measure, namely closure of its domain under set complementation — for example as developed in
[1, Chap 2]. Details are given of how one of the intervals problems solved by the outer measure
allows proof prior to the Lebesgue integration theory of the Bounded Convergence, Monotone
Convergence, and Dominated Convergence Theorems for Riemann integrals. One application of
the latter is the proof of Stirling’s Formula in [2]. Some further details on handling double series
are provided than is normally given, based on the textbook [3] of Konrad Knopp and the article
[4]. The term ‘countable union’ of sets will mean a union of an infinite sequence of sets. R will
denote the extended real number system R ∪ {∞,−∞}.

2 Properties of Intervals

2.1 Definition (Interval Length)

The length l(I) ∈ [0,∞] of an interval I in R is given by :

l(I) =


b− a if I = (a, b), [a, b], [a, b), or(a, b] where a, b ∈ R and a ≤ b,
∞ if I = (a,∞), [a,∞), (−∞, a), or (−∞, a] where a ∈ R,
∞ if I = (−∞,∞),
0 if I = Ø

Thus from the arithmetic of R :

l(I) = sup I − inf I, ∀ non-empty intervals I ⊆ R

and l(I) = ∞ iff I is unbounded.

2.2 Theorem

If I1, . . . , In are disjoint subintervals of interval I then :

l(I1) + · · ·+ l(In) ≤ l(I).

Proof

The result is clear if l(I) = ∞. Otherwise l(I) < ∞ and I is a bounded interval. Relabel the
I1, . . . , In so that they are in left to right order. Then whatever types of bounded intervals Ik
are (closed, open, half-closed/half-open), if g ≥ 0 is the total gap length within I between the Ik
then :

l(I1) + . . .+ l(In) + g = l(I)

and thus the required result follows.
QED
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2.3 Theorem

If (In) is a sequence of disjoint subintervals of interval I then :

∞∑
n=1

l(In) ≤ l(I).

Proof

The result is clear if l(I) = ∞. Otherwise ∀ n we have from Theorem 2.2 above :

l(I1) + · · ·+ l(In) ≤ l(I)

within R, hence taking the limit as n → ∞ the result follows.
QED

2.4 Theorem

If I and J are intervals then I \J is either a subinterval of I or a disjoint union of two subintervals
of I.

Proof

For all the possible interval types and relative positions of the I and J the result is clear.
QED

2.5 Theorem

If I, J1, . . . , Jn are intervals then I \ (J1 ∪ · · · ∪Jn) is a disjoint union of finitely many subintervals
of I.

Proof

True for n = 1 by Theorem 2.4. Suppose true for n and consider the case of n + 1. Then
I \ (J1 ∪ · · · ∪ Jn+1) = K \ (Jn+1), where K = I \ (J1 ∪ · · · ∪ Jn) is, by the inductive assumption,
a disjoint union of finitely many subintervals of I, K = K1 ∪ · · · ∪ Km, say. Then by Theorem
2.4, K \ Jn+1 = (K1 \ Jn+1) ∪ · · · ∪ (Km \ Jn+1) is a disjoint union of sets each one of which is a
union of one or two disjoint subintervals of I. But since the Kr \ Jn+1 are themselves disjoint so
K \ Jn+1 is then a disjoint union of subintervals of I, as required.

QED

2.6 Theorem

A countable union of intervals is a disjoint countable union of intervals whose sum of lengths does
not exceed the original sum of interval lengths. A finite union of intervals is a disjoint finite union
of intervals whose sum of lengths does not exceed the original sum of interval lengths.

Proof

Consider the countable case. Let A =
⋃∞

n=1 In, where In are arbitrary intervals in R. Then :

A =

∞⋃
n=1

In \ (I1 ∪ · · · ∪ In−1), a disjoint union of sets.

By Theorem 2.5, each individual set In \ (I1 ∪ · · · ∪ In−1) is a disjoint union of finitely many inter-

vals, J
(n)
1 ∪ · · · ∪ J

(n)
rn say, where rn ≥ 0, and where if J

(n)
i ∩J (m)

k ̸= Ø then n = m and i = k, thus :
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A = J
(1)
1 ∪ J

(1)
2 ∪ · · · ∪ J

(1)
r1

∪ J
(2)
1 ∪ J

(2)
2 ∪ · · · · · · · · · · · · ∪ J

(2)
r2

...
...

∪ J
(n)
1 ∪ J

(n)
2 ∪ · · · ∪ J

(1)
rn

...
...

and thus taking the diagonal sequence of intervals shown in red, (Kn) say, these are mutually
disjoint intervals with A =

⋃∞
n=1 Kn, as required.

For the sum of interval lengths, this is clear if we have
∑∞

n=1 l(In) = ∞, otherwise r(n) =

l(J
(n)
1 ) + · · ·+ l(J

(n)
rn ) ≤ l(In) < ∞ ∀ n, and thus the series

∑∞
n=1 r

(n) of total row lengths con-
verges in R to a number ≤

∑∞
n=1 l(In), so by [4, Theorem 3] (and adding empty sets onto the end

of the rows), the diagonal series of lengths
∑∞

n=1 l(Kn) converges to this number also.

For the finite case, just replace the ∞ in the above argument with an N ∈ N to obtain A equal
to a finite disjoint union of intervals, and the sum of interval lengths is clearly not increased.

QED

Corollary

The system of intervals I = { all disjoint countable unions of intervals in R }.

In Theorem 2.2 above we considered a finite disjoint union of subintervals I1 ∪ · · · ∪ In ⊆ I. In
the next two theorems we consider the corresponding theorems for the cases I1 ∪ · · · ∪ In = I and
I1 ∪ · · · ∪ In ⊇ I (superset), though disjointness is not required in the latter case.

2.7 Theorem

If I1, . . . , In are disjoint subintervals of interval I with I = I1 ∪ · · · ∪ In, then l(I1) + · · ·+ l(In) =
l(I).

Proof

Case l(I) = ∞, ie. I unbounded. Then at least one Ik is unbounded, so that l(Ik) = ∞, ∴
result follows. Consider the case l(I) < ∞, so I and each Ik is bounded. Then I is of form
[a, b], (a, b), [a, b), or(a, b], (a, b ∈ R), and each subinterval Ik ⊆ I is one of these interval types also.
Relabel the Ik’s so they are in L to R order. Then in order to avoid a gap the LH of I1 must align
with LH of I and be of the same end point type (ie. open or closed). And ∀ k likewise there can
be no gap between RH of Ik and LH of Ik+1, and the RH of In must align with the RH of I and
be of the same end point type. Therefore the result follows.

QED
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2.8 Theorem

Suppose interval I ⊆ I1 ∪ · · · ∪ In, a finite (not necessarily disjoint) union of intervals. Then
l(I1) + · · ·+ l(In) ≥ l(I).

Proof

If one of the Ik is unbounded then l(Ik) = ∞ and the result is clear, so assume each Ik (and hence
I) is bounded.

Let interval I ′k = I ∩ Ik so I = I ′1 ∪ · · · ∪ I ′n and therefore :

I = I ′1 ∪ (I ′2 \ I ′1) ∪ · · · ∪ (I ′n \ (I ′1 ∪ · · · ∪ I ′n−1))

= union of disjoint sets.

By Theorem 2.5, ∀ k, I ′k \ (I ′1 ∪ · · · ∪ I ′k−1) is a disjoint union of finitely many subintervals of

I ′k, J
(k)
1 ∪ · · · ∪ J

(k)
rk say, and by Theorem 2.2 we have :

l(J
(k)
1 ) + · · ·+ l(J (k)

rk
) ≤ l(I ′k), ∀ k (1)

Now

I =

n⋃
k=1

J
(k)
1 ∪ · · · ∪ J (k)

rk
(2)

where J
(k)
i ∩ J

(l)
j ̸= Ø ⇒ k = l and i = j, so that these sets are mutually disjoint intervals, and so

by Theorem 2.7 applied to (2) we have :

l(I) =

n∑
k=1

l(J
(k)
1 ) + · · ·+ l(Jk

rk
)

≤
n∑

k=1

l(I ′k) from (1)

≤
n∑

k=1

l(Ik) as I ′k ⊆ Ik

QED

Notes

(1) Theorem 2.7 implies finite additivity of the length function on intervals, when applied to
intervals equal to disjoint unions of intervals. Theorem 2.8 implies finite subadditivity of the
length function on intervals, when applied to intervals equal to arbitrary unions of intervals.

(2) We find when we develop the properties of the outer measure below that Theorems 2.7
and 2.8 still apply for n = ∞, ie we have (respectively) countable additivity and countable
subadditivity of the interval length function. The former follows from the equality of the
outer measure to the length function on the intervals (Theorems 3.5 and 3.9), together
with the countable additivity of the outer measure on all intervals (Theorem 3.10). The
latter follows from the equality of the outer measure to the length function on the intervals,
together with the countable subadditivity of the outer measure on P (R) (Theorem 3.3).

(3) Axler [1, p20, §2.14] provides an alternative method of proof of Theorem 2.8 using induction,
in the special case where I is a closed bounded interval and the Ik are arbitrary open intervals.
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2.9 The Need For Outer Measure

The outer measure provides efficient solutions to the following problems involving intervals, saving
effort compared with elementary methods.

Example 1

In Note (2) of §2.8 above we mentioned how outer measure could allow the extension to the infinite
case for Theorem 2.7 :

If (In) are disjoint subintervals of I with I =
⋃∞

n=1 In then
∑∞

n=1 l(In) = l(I).

It is instructive to consider how we might attempt to prove this without the concept of outer
measure. In [5, Problem 1] a proof is given for the special case where the In can be rearranged into
L to R order, or into R to L order. In [6] (a one-dimensional version of [7, Proposition 2.16, p48])
and [8] proofs are given for the general case, for I bounded and I unbounded respectively.

However using outer measure an immediate proof is obtained by applying Theorems 3.5, 3.9,
and 3.10 : simply write

∑∞
n=1 l(In) =

∑∞
n=1 |In| = |

⋃∞
n=1 In| = |I| = l(I).

Example 2

In answer [10] to question [9] a similar problem to Example 1 is given — where intervals In ⊆
[0, 1] ∀ n (In not necessarily disjoint) and the problem is to show

∑∞
n=1 l(In) < 1 ⇒

⋃∞
n=1 In ⊊

[0, 1]. Without the concept of outer measure this is not a trivial statement but it is sometimes
mistaken as being ‘obvious’. An elementary solution which does not use measure theory is pro-
vided by the proof in [6], which shows that

∑∞
n=1 l(In) ≥ l(I) whenever I ⊆

⋃∞
n=1 In (In not

necessarily disjoint).

With outer measure however we obtain an immediate proof using countable subadditivity
(Theorem 3.3) together with extension of the function l (Theorems 3.5 and 3.9) : |

⋃∞
n=1 In| ≤∑∞

n=1 |In| =
∑∞

n=1 l(In) < 1 = |[0, 1]|, so certainly
⋃∞

n=1 In ⊊ [0, 1]. (Note: we are thinking of the
elementary solution as comprising the text of proof [6] rather than just using the result of that
proof, in comparing it with the outer measure solution where we are assuming the outer measure
properties).

Example 3

In the proof of the Bounded Convergence Theorem for Riemann Integrals in Bartle [11, §22.14, p288]
the following problem arises for which the outer measure provides an efficient solution : prove that
if δ > 0 and if (En) is a sequence of sets in [0, 1] with each En containing a finite number of non-
overlapping closed intervals with a total length ≥ δ, then there exists a point belonging to infinitely
many of the En. The property of outer measure used to prove this is ‘measure of a decreasing
intersection’, as described in [1, §2.60, p44]. This property applies to outer measure on R once
it is established that outer measure satisfies all the conditions to be a ‘measure’ ([1, §2.54, p41]
and [1, §2.23, p26]), on a collection of sets in R containing the ‘system of intervals’ I (the Borel
sets B) — this is carried out in [1, §2D]. This solution is described in [5, Problem 2], [12], and
Appendix A.

Example 4

Show that the ‘system of intervals’ I is not closed under set complementation. The outer measure
on R provides proof of this using the Cantor Set as a counterexample — see Appendix B.

Note

In the Examples 1 & 2 above, all the outer measure properties needed are derived in this article,
namely Theorems 3.3, 3.5, 3.9, and 3.10.

For Example 3, the property of outer measure required is ‘measure of a decreasing intersec-
tion’ [1, §2.60, p44] which requires the full development of the outer measure as a ‘measure’ ([1,
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§2.54, p41] and [1, §2.23, p26]) on a suitable class of sets in R (the Borel sets B). The proof of this
property requires countable additivity of the outer measure and closure of its domain under set
complementation. Outer measure satisfies countable additivity on the set I by Theorem 3.11, but
I is not closed under set complementation (see Appendix B) and thus is not a suitable domain
for outer measure, but extending I to B achieves this closure, whilst maintaining the countable
additivity [1, §2D]. Although the outer measure must be restricted to B to satisfy all the necessary
properties of a ‘measure’, note it is well defined on any subset of R (definition §3.1).

Example 4 also makes use of the full properties of outer measure from Axler [1].

3 Outer Measure

3.1 Definition

The outer measure |A| ∈ [0,∞] of a set A ⊆ R is defined by

|A| = inf

{ ∞∑
k=1

l(Ik) : {I1, I2, . . .} is a countable open interval cover of A

}

Note

The outer measure function is defined on all subsets of R, in contrast to the length function l
above (Definition 2.1) which is only defined on intervals in R. In Theorems 3.5 and 3.9 below we
show the outer measure function is an extension of the function l.

3.2 Theorem (Set Order Preservation)

If A ⊆ B ⊆ R then |A| ≤ |B|.

Proof

Any countable open interval cover for B is a countable open interval cover for A and hence the
sum of its lengths is ≥ |A|, which is therefore a lower bound for all such sums. But |B| is the
greatest such lower bound.

QED

3.3 Theorem (Countable Subadditivity)

For any sequence (An) of sets in R ∣∣∣ ∞⋃
n=1

An

∣∣∣ ≤ ∞∑
n=1

|An| (3)

Proof

Let A =
⋃∞

n=1 An. In the case where |An| = ∞ for some n the RHS equals ∞, therefore the result
is concluded. Assume now that we have every |An| < ∞. If we have a countable open interval

(COI) cover (I
(n)
k ) for An (∀n) then :

A1 ⊆ I
(1)
1 ∪ I

(1)
2 ∪ I

(1)
3 ∪ · · ·

A2 ⊆ I
(2)
1 ∪ I

(2)
2 ∪ · · ·

...
...

An ⊆ I
(n)
1 ∪ I

(n)
2 ∪ · · ·

...
... (4)
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Let (Jn) be the diagonal sequence of open intervals shown in red. Then (Jn) is a COI cover
for A, and thus by Definition 3.1 of outer measure :

|A| ≤
∞∑

n=1

l(Jn) (5)

Intuitively we expect the term on the right of (5) to equal the sum of row sums of the interval
lengths in the above COI covers (4), and if we choose these COI covers so that for each n the
sum of interval lengths in the COI cover for An becomes closer and closer to |An|, the RHS of (5)
approaches closer and closer to

∑∞
n=1 |An| from above, thus enforcing the inequality (3).

To formalize this take an ϵ > 0. Then ∀ n we can find a COI cover (I
(n)
k ) of An such that :

|An| ≤
∞∑
k=1

l(I
(n)
k ) < |An|+ ϵ/2n < ∞ (6)

Then consider the double series formed by the interval lengths (l(I
(n)
k )) (n = row, k = column) :

l(I
(1)
1 ) + l(I

(1)
2 ) + · · · · · · · · · = r(1)

l(I
(2)
1 ) + l(I

(2)
2 ) + · · · · · · · · · = r(2)

...
...

...

l(I
(n)
1 ) + l(I

(n)
2 ) + · · · · · · · · · = r(n)

...
...

...

where :
sum of nth row r(n) ∈ [ |An|, |An|+ ϵ/2n ) (7)

From [4, Theorem 3],
∑∞

n=1 r
(n) is convergent in R iff the diagonal series

∑∞
n=1 l(J

(n)) is
convergent in R and in this case they are equal. Thus two cases arise :

(i) Case
∑∞

n=1 r
(n) converges in R. Then

∑∞
n=1 |An| also converges in R, by (7), and we have :

|A| ≤
∞∑

n=1

l(J (n)), from (5)

=

∞∑
n=1

r(n) ≤
∞∑

n=1

(|An|+ ϵ/2n) from (7)

⇒ |A| ≤
∞∑

n=1

|An|+ ϵ (8)

(ii) Case
∑∞

n=1 r
(n) diverges in R. Then :

∞∑
n=1

(|An|+ ϵ/2n) = ∞, from (7)

⇒
∞∑

n=1

|An| = ∞ (9)

If ∃ ϵ > 0 such that case (ii) arises then we obtain (3) immediately from (9). Otherwise for
every ϵ > 0 case (i) arises, so that (8) holds ∀ ϵ > 0, and hence (3) follows.

QED
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3.4 Theorem (Outer Measure Unaffected By Single Point)

For any A ⊆ R and x ∈ R :

(i) |A ∪ {x}| = |A|, (ii) |A \ {x}| = |A|

Proof

(i) Order Preservation (Theorem 3.2)⇒ |A| ≤ |A ∪ {x}|. Countable Subadditivity (Theorem 3.3)
⇒ |A∪{x}| ≤ |A|+|{x}| = |A|, since |{x}| = 0. Then by anti-symmetry of the order relation
on R the result follows.

(ii) From (i), |A \ {x} ∪ {x}| = |A \ {x}|, ie. |A ∪ {x}| = |A \ {x}|, hence |A| = |A \ {x}|.

QED

3.5 Theorem (Outer Measure Equals Length for Bounded Intervals)

If I is a bounded interval then |I| = l(I).

Proof

Firstly consider I = [a, b] where a < b. The single set (a − ϵ, b + ϵ) is a COI cover of I ∴
|I| ≤ (b− a) + 2ϵ ∀ ϵ > 0 ∴ |I| ≤ (b− a), ie |I| ≤ l(I).

Suppose now (In) is an arbitrary COI cover for I = [a, b]. By Heine-Borel theorem, I is com-
pact so ∃ a finite subcover, hence ∃ m such that I ⊆ I1 ∪ · · · ∪ Im. Then by Theorem 2.8 above,
l(I1)+ · · ·+ l(Im) ≥ l(I), and so

∑∞
n=1 l(In) ≥ l(I). Thus l(I) is a lower bound for all such infinite

sums, and so |I| ≥ l(I). Thus |I| = l(I) for any I of form [a, b].

By Theorem 3.4 we can add or remove finitely many points from a set and it does not alter
the outer measure. Thus for any a, b ∈ R with a < b, we have b− a = l([a, b]) = |[a, b]| = |(a, b)| =
|[a, b)| = |(a, b]|, thus the measure of each of the latter three interval types equals their length
b− a. Thus |I| = l(I) for every bounded interval type I.

QED

We can show |I| = l(I) is also true for unbounded intervals, once we have shown outer measure
is countably additive wrt bounded intervals (Theorem 3.8 below). Note that an unbounded set in
R does not necessarily have outer measure of ∞, as outer measure is readily checked to be zero
for any countable set. However due to Theorem 3.2 and the theorem just proved, any bounded
set in R must have outer measure < ∞.

3.6 Theorem (Additivity for ‘Separated’ Sets)

For any A,B ⊆ R with supA < inf B (ie. a ‘gap’ exists between A and B), we have |A ∪ B| =
|A|+ |B|.

Proof

By subadditivity we have |A∪B| ≤ |A|+ |B|. For ≥ we require |A|+ |B| to be a lower bound for
every

∑∞
n=1 l(In) where (In) is an arbitrary COI for A ∪B.

If ∃ an unbounded In then l(In) = ∞ and we are done, so we can assume every open interval
In is bounded. Furthermore if

∑∞
n=1 l(In) = ∞ then we are again done, so assume this sum is

finite. Choose any a ∈ (supA, inf B).

asupA inf B

A B
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Partition (In) into the following subsequences : (Pn) which meet A only, (Rn) which meet B
only, (Qn) which meet both A and B (so a ∈ Qn), and (Tn) which meet neither A nor B. If any
of these are finite subsequences extend them out to infinite sequences by adding Ø’s (or {a}’s in
the case of (Qn)).

Then since
∑∞

n=1 l(In) < ∞, by [4, Theorem 1] we have :

∞∑
n=1

l(Pn) +

∞∑
n=1

l(Qn) +

∞∑
n=1

l(Rn) +

∞∑
n=1

l(Tn) =

∞∑
n=1

l(In)

so
∞∑

n=1

l(Pn) +

∞∑
n=1

l(Qn) +

∞∑
n=1

l(Rn) ≤
∞∑

n=1

l(In) < ∞ (10)

Because every bounded open interval Qn must contain a we can write Qn = Q
(L)
n ∪{a}∪Q

(R)
n ,

where Q
(L)
n is a bounded open interval strictly to the left of a and Q

(R)
n is a bounded open interval

strictly to the right of a. Then noting a /∈ A ∪B we have :

A ⊆
∞⋃

n=1

Pn ∪
∞⋃

n=1

Q(L)
n and B ⊆

∞⋃
n=1

Q(R)
n ∪

∞⋃
n=1

Rn

But then again applying [4, Theorem 1] :

|A| ≤
∞∑

n=1

l(Pn) +

∞∑
n=1

l(Q(L)
n ) and |B| ≤

∞∑
n=1

l(Q(R)
n ) +

∞∑
n=1

l(Rn)

∴ since l(Qn) = l(Q
(L)
n ) + l(Q

(R)
n ) ∀ n :

|A|+ |B| ≤
∞∑

n=1

l(Pn) +

∞∑
n=1

l(Qn) +

∞∑
n=1

l(Rn)

≤
∞∑

n=1

l(In) by (10)

QED

Note in the next theorem we confine ourselves to bounded intervals because it is only for these
that we have presently have |I| = l(I).

3.7 Theorem (Finite Additivity wrt Bounded Intervals)

Outer measure is finitely additive wrt bounded intervals, ie. if I1, . . . , In are disjoint bounded
intervals in R then :

|I1 ∪ · · · ∪ In| = |I1|+ · · ·+ |In|.

Proof

Consider case n = 2. Relabel I1, I2 so they are in L to R order. If a ‘gap’ exists between I1
and I2 then by Theorem 3.6 the result follows. If no gap exists then because I1 and I2 are in-
tervals we must have I1 ∪ I2 an interval with l(I1 ∪ I2) = l(I1) + l(I2). But since I1 and I2 are
bounded we know |I1| = l(I1), |I2| = l(I2), and |I1∪ I2| = l(I1∪ I2), from Theorem 3.5, and hence
|I1 ∪ I2| = |I1|+ |I2| as required.

Now assume the theorem is true for n (where n ≥ 2), and consider the case of n + 1. Let
I1, . . . , In+1 be n+ 1 disjoint bounded intervals. Relabel them so they are in L to R order.

If there is no ‘gap’ between In and In+1 then by adding the single boundary point a between
In and In+1 and letting interval J = In ∪ {a} ∪ In+1 we have l(J) = l(In) + l(In+1), and :

|I1 ∪ · · · ∪ In+1| = |I1 ∪ · · · ∪ In−1 ∪ J |, by Theorem 3.4

= |I1|+ · · ·+ |In−1|+ |J |, by the inductive assumption, since I1, . . .

. . . , In−1, J are n disjoint bounded intervals.
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But, using Theorem 3.5 :

|J | = l(J) = l(In) + l(In+1) = |In|+ |In+1|

hence the result for n+ 1 follows.

If there is a ‘gap’ between In and In+1, ie.

sup(I1 ∪ · · · ∪ In) < inf In+1

then we obtain :

|I1 ∪ · · · ∪ In+1| = |I1 ∪ · · · ∪ In|+ |In+1|, by Theorem 3.6

= |I1|+ · · ·+ |In|+ |In+1|, by the inductive assumption

hence completing the inductive step.
QED

3.8 Theorem (Countable Additivity wrt Bounded Intervals)

Outer measure is countably additive wrt bounded intervals, ie. if (In) is a sequence of disjoint
bounded intervals in R then : ∣∣∣ ∞⋃

n=1

In

∣∣∣ = ∞∑
n=1

|In|

Proof

By countable subadditivity of outer measure (Theorem 3.3) :∣∣∣ ∞⋃
n=1

In

∣∣∣ ≤ ∞∑
n=1

|In| (11)

By Theorems 3.7 and 3.2 :

|I1|+ · · ·+ |In| = |I1 ∪ · · · ∪ In| ≤
∣∣∣ ∞⋃
n=1

In

∣∣∣ ,∀ n

thus, taking the limit as n → ∞ :

∞∑
n=1

|In| ≤
∣∣∣ ∞⋃
n=1

In

∣∣∣
which together with (11) gives the required result.

QED

3.9 Theorem (Outer Measure Equals Length for Unbounded Intervals)

If I ⊆ R is an unbounded interval then |I| = ∞, ie |I| = l(I).

Proof

First consider I = (a,∞). Then :

I =

∞⋃
n=1

(a+ n− 1, a+ n] = disjoint union of bounded intervals

∴ by Theorems 3.8 and 3.5, |I| =
∑∞

n=1 1 = ∞.

The case of (−∞, a) follows similarly. The cases of [a,∞) and (−∞, a] then follow by adding
a single point. Finally, I = (−∞,∞) follows from order preservation.

QED

Hence we now have |I| = l(I), ∀ intervals I ⊆ R, a property that we would expect intuitively
from any measure function on R.
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3.10 Theorem (Countable Additivity wrt All Intervals)

Outer measure is countably additive wrt all intervals in R, ie. if (In) is any sequence of disjoint
intervals in R then : ∣∣∣ ∞⋃

n=1

In

∣∣∣ = ∞∑
n=1

|In|.

Proof

If every In is bounded then we are done by Theorem 3.8. Otherwise ∃ an unbounded In and
then by Theorem 3.9 we have |In| = ∞. Then

∑∞
n=1 |In| = ∞. But by order preservation∣∣ ⋃∞

n=1 In
∣∣ = ∞, and thus

QED

3.11 Theorem (Countable Additivity on System of Intervals I)
Outer measure is countably additive on the system of intervals I = { all countable unions of
intervals in R }.

Proof

Take A =
⋃∞

n=1 An a disjoint countable union in I (noting I is closed under countable union).
By Theorem 2.6, each An ∈ I is a disjoint countable union of intervals in R :

A1 = I
(1)
1 ∪ I

(1)
2 ∪ I

(1)
3 ∪ · · · (disjoint union)

A2 = I
(2)
1 ∪ I

(2)
2 ∪ · · · (disjoint union)

...
...

...

An = I
(n)
1 ∪ I

(n)
2 ∪ · · · (disjoint union)

...
...

... (12)

We require |A| =
∑∞

n=1 |An|, and this is clear if ∃ |An| = ∞, so assume every |An| ∈ R. By
Theorem 3.10 we have :

|A1| = |I(1)1 | + |I(1)2 | + |I(1)3 | + · · ·

|A2| = |I(2)1 | ∪ |I(2)2 | + · · ·

...
...

|An| = |I(n)1 | + |I(n)2 | + · · ·

...
... (13)

Label as (Jn) the diagonal sequence of intervals shown in red in (12), so A =
⋃∞

n=1 Jn. Then
the Jn are mutually disjoint intervals, and so by Theorem 3.10, we have |A| =

∑∞
n=1 |Jn|.

But since every |An| ∈ R, we can apply [4, Theorem 3] to (13) to conclude
∑∞

n=1 |Jn| converges
in R iff

∑∞
n=1 |An| converges in R and in this case the two are equal. In the case they diverge in R

they both equal∞, thus in all cases they are equal in R. Thus we have the desired |A| =
∑∞

n=1 |An|.

QED
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3.12 The Borel Algebra

In the answer [12] it is discussed how the properties required of a function µ : C → [0,∞], defined
on a class C of subsets of R, for it to be considered a ‘measure’ on R, are as follows :

(A) For the domain C of µ :

1. contains all intervals

2. is closed under countable union

3. is closed under set complementation

(B) For the function µ :

1. satisfies µ(I) = l(I) ∀ intervals I ⊆ R
2. is countably additive, ie µ(

⋃∞
n=1 En) =

∑∞
n=1 µ(En), whenever (En) are disjoint sets

in C.

From the theorems above, and from the Appendix B, it is clear that in taking µ = outer
measure and C = I, all of these properties are satisfied with the exception of (A)(3). It is shown
in [1, §2.18, p21] that countable additivity of outer measure fails on P (R) even for just two sets.
Thus for outer measure to become a measure we seek a C somewhere between I and P (R) such
that all of the above conditions (A) – (B) hold.

Conditions (A) give rise to the concept of a σ-algebra on a set X, which is a non-empty
collection of subsets of X closed under countable union and closed under set complementation
(from which closure under countable intersection follows). Then the intersection of any family of
σ-algebras is a σ-algebra, and if A is an arbitrary collection of subsets of X we can define σ(A)
to be the intersection of all σ-algebras of X which contain A (noting that there is always at least
one such σ-algebra, namely P (X)). This is then the smallest σ-algebra containing A.

If the domain C was a σ-algebra containing I then (A) would be satisfied, and µ : C → [0,∞]
would then be a measure if µ was countably additive on C. The Borel algebra B is defined to be
the σ-algebra σ(I). It is readily shown that B = σ(I) = σ(all intervals) = σ(all open intervals) =
σ(all closed intervals) = σ(all open sets) = σ(all closed sets). In [1, §2D, p47] it is proved that the
outer measure is in fact countably additive on B, and thus we have outer measure as a measure
on R with domain B. The sets in B are called Borel sets.

Although we would naturally want the measure function to be defined on as large a class of
sets as possible, taking B to be the smallest σ-algebra containing I has the advantage of providing
an avenue of proving properties about the sets in B — namely by considering the set of all subsets
of R which have the desired property, and showing that it is a σ-algebra and that it contains I —
then it must contain B and therefore every set in B has the desired property. An example of this
technique is in [1, §2.65, p48], where it is used to prove that the Borel sets can be approximated
from below by closed sets by showing that the set L of all sets possessing that property is a
σ-algebra which contains all closed sets, and hence contains B = σ(all closed sets). The sets in L
are known as the Lebesgue measurable sets [1, p52].
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Appendix A - Convergence Theorems For Sequences Of Rie-
mann Integrals

Convergence Theorems For Sequences Of Riemann Integrals

Proofs of the Bounded Convergence, Monotone Convergence, and Dominated Convergence
Theorems for Riemann integrals are given below, showing the role played by the outer measure by
solving the intervals problem described in Example 3 of §2.9, which allows the proof of the BCT.
The MCT and DCT then follow from the BCT as corollaries. The DCT for Riemann integrals is
used in the proof of Stirling’s Formula in [2].

The methods of proof used are as given in [11, §22.13, p287], [11, §22.14, p288], [11, §22.15,
p289], and [11, §25.21, p359], but additionally we use the equivalence of the definition of the
Riemann integral in terms of partition refinement in [11, §22.2, p277] (as a special case of the
Riemann-Stieltjes integral) with the definition of the Riemann integral in terms of upper and
lower Riemann sums in [13, §6.1.6, p239] (this equivalence is established by theorems [13, §6.4.2,
p268] and [13, §6.4.3, p269]). Note the IRA definition [13, §6.1.6, p239] of Riemann integrable
requires f to be bounded, whilst the ERA definition [11, §22.2, p277] implies f is bounded.

Each of the BCT, MCT, and DCT apply to a sequence (fn) of Riemann integrable functions

with pointwise limit a Riemann integrable function f , and have as conclusion that limn→∞
∫ b

a
fn =∫ b

a
f (where a = −∞ or b = ∞ or both of these, in the case of the DCT). Each theorem places a

certain requirement on the (fn) :

(i) For BCT, (∥fn∥) has some uniform bound B,

(ii) For MCT, (fn) is a monotone sequence,

(iii) For DCT, (fn) is dominated by an infinitely integrable function M .

A.1 Bounded Convergence Theorem

The first theorem below is the intervals problem of Example 3 of §2.9 which is proved using the
outer measure.

A.1.1 Theorem (Intervals Problem)

If δ > 0 and if (En) is a sequence of subsets of R with each En containing a finite number of
non-overlapping closed intervals with a total length ≥ δ, then there exists a point belonging to
infinitely many of the En.

Proof

We use the result in Axler [1, §2.60, p44] on the measure of a decreasing intersection, applied to the
outer measure on R on the Borel sets B. We require to prove that the set E =

⋂∞
n=1

⋃∞
m=n Em

is non-empty, and if we denote by Fn the union of the above intervals within En (so Fn is a
Borel set), and let F =

⋂∞
n=1

⋃∞
m=n Fm ⊆ E, then we have |F | = limn→∞ |

⋃∞
m=n Fm|, where

∀ n |
⋃∞

m=n Fm| ≥ |Fn| ≥ δ (noting Fn equals a finite union of disjoint intervals with a total
length ≥ δ), so that |F | ≥ δ > 0 and hence F ̸= ∅ and thus E ̸= ∅, as required.

QED

A.1.2 Theorem ([11, Lemma 22.13, p287])

Let f : J → R be a bounded non-negative function which is Riemann integrable on J = [0, 1] with

α =
∫ 1

0
f > 0. Then E = f−1([α/3,∞)) contains a finite number of non-overlapping intervals

with a total length ≥ α/3∥f∥.

Proof

Choose a partition P = (a0, . . . , an) of J such that for any intermediate tags 2
3α < S(P, f) < 4

3α.
For each k, choose a tag ck ∈ [ak−1, ak] as follows :

(i) ck with f(ck) < α/3, if such ck ∈ [ak−1, ak] exists,

13



(ii) if no such ck exists then choose any ck ∈ [ak−1, ak].

In the case of (ii) we have [ak−1, ak] ⊆ E. If the case of (ii) never arose we would have
f(ck) < α/3 for k = 1, 2, . . . , n and hence S(P, f) ≤ α/3. Hence case (ii) must arise at least once,
and if L = sum of lengths of the non-overlapping subintervals of J in (ii) then L > 0.

With the above choice of tags (ck) we then have S(P, f) = S1+S2, where S1 ≤ α/3 (from (i)),
and S2 ≤ ∥f∥L (from (ii)). Thus :

S1 + S2 > 2
3α

⇒ ∥f∥L ≥ 2
3α− S1 ≥ 1

3α

⇒ L ≥ α/3∥f∥, as required.

QED

A.1.3 Theorem (Bounded Convergence Theorem, [11, §22.14, p288])

Let (fn) be a sequence of bounded Riemann integrable functions : J → R with pointwise limit f
also a bounded Riemann integrable function on J = [a, b]. Then if there is a uniform bound B
such that ∥fn∥ ≤ B ∀ n then :

lim
n→∞

∫ b

a

fn =

∫ b

a

f.

Proof

Consider first the special case where f = 0, each fn ≥ 0, and J = [0, 1]. Suppose that
∫ 1

0
fn → 0

does not hold. We show that in this case pointwise convergence of (fn) to 0 fails, thus establishing
the contrapositive of the result.

By the failure of
∫ 1

0
fn → 0, ∃ ϵ > 0 such that for no N does n > N imply |

∫ 1

0
fn| < ϵ,

and hence ∃ subsequence (fnk
) such that ∀ k ∈ N,

∫ 1

0
fnk

≥ ϵ. Define αk =
∫ 1

0
fnk

and let
Ek = f−1

nk
([αk/3,∞)). By Theorem A.1.2, Ek contains a finite number of non-overlapping intervals

with a total length Lk ≥ αk/3∥fnk
∥. But 1

∥fnk
∥ ≥ 1

B and αk ≥ ϵ so Lk ≥ ϵ/3B. Then defining

δ = ϵ/3B and applying Theorem A.1.1 (the intervals problem), ∃ x ∈ [0, 1] belonging to Ek for
infinitely many k. But then for infinitely many k we have :

fnk
(x) ≥ αk

3
≥ ϵ

3
∴ lim

k→∞
fnk

(x) ̸= 0, as required.

Now consider the case where f = 0, each fn ≥ 0, and J = [a, b]. Define gn(x) = fn(a+x(b−a))
for x ∈ [0, 1]. Then gn ≥ 0 is Riemann integrable on [0, 1] with ∥gn∥ ≤ B ∀ n, and gn(x) → 0 ∀ x.

Then by the case just proved, we have
∫ 1

0
gn → 0. But, putting t = a+x(b− a), so dt/dx = b− a,

we have ∫ b

a

fn(t) dt =

∫ 1

0

fn(a+ x(b− a))(b− a) dx

= (b− a)

∫ 1

0

gn(x) dx → 0 as n → ∞, as required.

Finally for the general case let gn(x) = |fn(x) − f(x)|. Then gn(x) ≥ 0, gn(x) → 0, and

∥gn∥ ≤ B + ∥f∥ = B2 ∀ n, so from the previous case
∫ b

a
gn → 0. From [13, §6.2.13, p254], fn and

f Riemann integrable ⇒ |fn − f | Riemann integrable and :∣∣∣ ∫ b

a

fn −
∫ b

a

f
∣∣∣ ≤

∫ b

a

|fn − f | =
∫ b

a

gn → 0

∴
∫ b

a

fn →
∫ b

a

f, as required.

QED
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A.2 Monotone Convergence Theorem ([11, §22.15, p289])

Let (fn) be a sequence of bounded Riemann integrable functions : J → R with pointwise limit f
also a bounded Riemann integrable function on J = [a, b]. Then if (fn) is monotone :

lim
n→∞

∫ b

a

fn =

∫ b

a

f.

Proof

Case monotone increasing. Then f1(x) ≤ f2(x) ≤ · · · ≤ f(x) = supn fn(x) ∴ f1(x) ≤ fn(x) ≤
f(x) ∀ x, n ∴ |fn(x)| ≤ max(|f1(x)|, |f(x)|) ≤ max(∥f1∥, ∥f∥) = B say, ∴∥fn∥ ≤ B. The conclu-
sion then follows from the BCT.

Case monotone decreasing. Then f1(x) ≥ f2(x) ≥ · · · ≥ f(x) = infn fn(x) ∴ f1(x) ≥ fn(x) ≥
f(x) ∀ x, n ∴ ∥fn∥ ≤ B and the conclusion follows from the BCT.

QED

A.3 Dominated Convergence Theorem ([11, §25.21, p359])

Suppose (fn) is a sequence of functions on [a,∞) with pointwise limit f , and with fn, f Riemann
integrable on [a, c] ∀ c > a. Suppose the (fn) are dominated by a function M which is Riemann
integrable over [a,∞), ie. |fn(x)| ≤ M(x) ∀ x ∈ [a,∞) and n ∈ N. Then fn, f are Riemann
integrable over [a,∞) and :

lim
n→∞

∫ ∞

a

fn =

∫ ∞

a

f.

A similar result applies for the domains (−∞, a] and (−∞,∞).

Proof

(Note : we define infinite Riemann integral
∫∞
a

f to be absolutely convergent if
∫∞
a

|f | is con-
vergent. In this case

∫∞
a

f is convergent and |
∫∞
a

f | ≤
∫∞
a

|f |).

Since |f(x)| = limn→∞ |fn(x)|, we have |fn|, |f | ≤ M on [a,∞), thus by the comparison test
for infinite Riemann integrals,

∫∞
a

f and
∫∞
a

fn are absolutely convergent.

Consider a fixed K > a. For each x ∈ [a,K] and n ∈ N, |fn(x)| ≤ M(x). But since M is
Riemann integrable on [a,K] it is bounded on [a,K], so ∃ B such that |fn(x)| ≤ B ∀ x ∈ [a,K]
and n ∈ N, so that ∥fn∥[a,K] ≤ B ∀ n ∈ N. Then applying the BCT we have :

lim
n→∞

∫ K

a

fn =

∫ K

a

f (14)

and this holds for any K > a. Now for any such K > a we can write :∣∣∣ ∫ ∞

a

fn −
∫ ∞

a

f
∣∣∣ =

∣∣∣ ∫ K

a

fn +

∫ ∞

K

fn −
∫ K

a

f −
∫ ∞

K

f
∣∣∣

≤
∣∣∣ ∫ K

a

fn −
∫ K

a

f
∣∣∣+ ∣∣∣ ∫ ∞

K

fn −
∫ ∞

K

f
∣∣∣

≤
∣∣∣ ∫ K

a

fn −
∫ K

a

f
∣∣∣+ ∫ ∞

K

|fn|+
∫ ∞

K

|f |,

from absolute convergence of
∫∞
K

fn and
∫∞
K

f

≤
∣∣∣ ∫ K

a

fn −
∫ K

a

f
∣∣∣+ 2

∫ ∞

K

M, (15)

by comparison with function M on [K,∞).

Now let ϵ > 0 be arbitrary. Since M is Riemann integrable on [a,∞) ∃ K such that

0 ≤
∫∞
K

M < ϵ/3. Then using equation (14) select N such that ∀ n > N , |
∫K

a
fn −

∫K

a
f | <

ϵ/3. Then ∀n > N , from (15), we have the inequality |
∫∞
a

fn −
∫∞
a

f | < ϵ. But this means

limn→∞
∫∞
a

fn =
∫∞
a

f , as required. The case (−∞, a] is proved similarly and the case (−∞,∞)
then follows from the cases (−∞, 0] and [0,∞).

QED
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Appendix B - Proving System Of Intervals Not Closed Un-
der Set Complementation

Proving I Not Closed Under Set Complementation

We show how the outer measure on R can be used to prove this using the outer measure
properties as developed in Axler [1, Chap 2].

We assume the following properties of the ‘Cantor Set’ C :

1. C = [0, 1] \
⋃∞

n=1 Dn, where (Dn) is a disjoint sequence of open sets in [0, 1], each one a
finite disjoint union of 2n−1 ‘middle third’ open intervals, each of length 1/3n.

2. C is uncountable.

From finite additivity (Theorem 3.7) and extension of interval length (Theorem 3.5) we have
|[0, 1]| = 1 and |Dn| = 2n−1/3n. Then :

|C| = |[0, 1]| −
∣∣∣ ∞⋃
n=1

Dn

∣∣∣ , from Axler [1, §2.57(b), p42] (16)

= 1−
∞∑

n=1

|Dn|, using countable additivity on I (Theorem 3.11) (17)

= 1− 1

3

∞∑
n=1

(
2

3

)n−1

= 0.

Now if C were a countable union of intervals,
⋃∞

n=1 In say, then since C is uncountable at least
one of the In must have non-zero width, Ik say, for otherwise C would be a countable union of
singletons. But then by order preservation we would have |C| ≥ |Ik| > 0, a contradiction. Hence
C can never be expressed as a countable union of intervals, ie C /∈ I. We now note I is closed
under ‘subtraction’ of an interval, by Theorem 2.4, since (

⋃
In) \ I =

⋃
(In \ I). Thus if the

complement R \
⋃∞

n=1 Dn of the set
⋃∞

n=1 Dn in I was also in I we would conclude by subtracting
the intervals (−∞, 0) and (1,∞) from it that C ∈ I — a contradiction. Thus the set

⋃∞
n=1 Dn ∈ I

provides the required counterexample.

Note in equation (16) we cannot apply Theorem 3.11 to derive this relation since we only know⋃∞
n=1 Dn ∈ I, but we do not have C ∈ I. Thus we require the fuller set of measure properties from

Axler where the domain is the Borel algebra B which does contain both of these sets. However
equation (17) follows from Theorem 3.11, as here we are only dealing with sets in I.
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